REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION ****

EXAMEN DU BACCALAUREAT SESSION 2015

Section: Sciences expérimentales

Epreuve	:	SCIENCES	PHYSIQUES
---------	---	-----------------	------------------

Durée: 3 H

Coefficient: 4

Session principale

Le sujet comporte 05 pages numérotées de 1/5 à 5/5.

La page 5/5 est à remplir par le candidat et à rendre avec sa copie.

Chimie (9 points)

Exercice 1 (4,5 points)

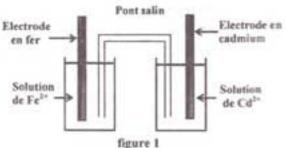
Toutes les solutions aqueuses sont prises à 25°C, température à laquelle le produit ionique de l'eau pure est $K_c = 10^{-14}$. On néglige les ions provenant de l'ionisation propre de l'eau.

Une monobase B est considérée faiblement ionisée dans l'eau, si le taux d'avancement final τ_f de sa réaction avec l'eau est inférieur ou égal à 5.10^{-2} .

- I- On prépare une solution aqueuse (S_1) d'ammoniac NH_3 , de concentration initiale $C_1 = 10^{-2} \text{ mol.L}^{-1}$ et de $pH_1 = 10.6$.
- 1- a- Montrer que NH₃ est une base faible ; écrire l'équation de sa réaction dans l'eau.
 b- Calculer τ_f en précisant chaque approximation utilisée.
- 2- Etablir l'expression de la constante d'acidité K_{a1} du couple NH₄⁺ / NH₃ en fonction de K_e, C₁ et τ_f. Calculer sa valeur.
- II- Un groupe d'élèves est chargé d'effectuer séparément le dosage d'un volume $V_b = 20 \text{ mL}$ de la solution (S_1) et d'un même volume d'une solution (S_2) d'éthanamine $C_2H_5NH_2$, de concentration $C_2 = 10^{-2} \text{ mol.L}^{-1}$ et de $pK_{a2} = 10$,8. L'éthanamine est considérée comme une base faible dans l'eau. Pour ces deux dosages, on utilise la même solution aqueuse (S_A) d'acide chlorhydrique $(H_3O^* + C\Gamma)$ de concentration $C_a = 10^{-2} \text{ mol.L}^{-1}$.
- 1-a- Ecrire l'équation bilan de la réaction qui se produit au cours du dosage de la solution (S₂) d'éthanamine.
- b- Définir l'équivalence acido-basique et vérifier que le volume d'acide ajouté à l'équivalence, relatif à chacun de ces deux dosages, est égal à 20 mL.
- c- Reproduire et compléter, en le justifiant, le tableau suivant :

	Volume VA(mL) de (SA)	0	10
Dosage de (S ₁)	pH du mélange (S ₁ +S _A)	10,6	******
Dosage de (S2)	pH du mélange (S2+SA)		10,8

2- Comparer, en le justifiant, la force des deux bases : NH3 et C2H5NH2.


Exercice 2 (4,5 points)

On suppose que les volumes des deux solutions contenues dans les deux compartiments de la pile sont égaux et restent constants au cours de son fonctionnement.

A 25°C, on réalise la pile électrochimique (P) formée par les deux couples redox Fe^{2^+}/Fe et Cd^{2^+}/Cd , dont le schéma est donné par la figure 1 et telles que les concentrations $[Fe^{2^+}] = C$ et $[Cd^{2^+}] = C_0 = 10^{-1}$ mol.L⁻¹.

1 - a- Donner le symbole de la pile (P).

b- Ecrire l'équation de la réaction associée à la pile (P).

2- On maintient la valeur de la concentration des ions Cd^{2+} constante et égale à 10^{-1} mol.L⁻¹.

Pour différentes valeurs de la concentration C en ions Fe^{2+} , on mesure à l'aide d'un voltmètre la fem initiale E de la pile (P) réalisée. Les valeurs de E sont

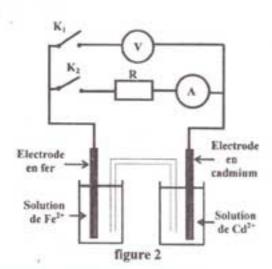
consignées dans le tableau ci-contre :

a- Ecrire l'expression de la fem E de la pile en fonction des concentrations en ions Cd^{2*}, C et de la fem standard E de la pile.

Pile (P)	(P ₁)	(P2)	(P ₃)	(P ₄)
C (mol.L-1)	1	10.1	10-2	10-3
E (V)	0,01	0,04		0,10

b- A partir du tableau, montrer que la valeur de la fem standard de la pile (P) est E° = 0,04 V.

e- Comparer les pouvoirs réducteurs des couples redox mis en jeu.


3- Avec la pile (P₃), on réalise le circuit électrique comportant un ampèremètre A, un voltmètre V, un résistor R et deux interrupteurs K₁ et K₂ dont le schéma est donné par la figure 2. On maintient la concentration des ions Cd²⁺ constante et égale à 10⁻¹ mol.L⁻¹.

a- L'interrupteur K₂ étant ouvert, on ferme K₁; calculer la valeur de la fem initiale E₃ indiquée par le voltmètre et en déduire la polarité de la pile (P₃).

b- A l'instant t = 0, on ferme aussi K2.

b₁- Préciser le sens de déplacement des électrons dans le circuit électrique extérieur à la pile.

b₂- Ecrire l'équation de la réaction chimique qui se produit spontanément.

4- Après une durée suffisante de fonctionnement de la pile (P₃), l'ampèremètre indique une intensité nulle. Les concentrations des ions Cd²⁺ et Fe²⁺ prennent, respectivement, les valeurs C₁ et C₂ et aucune des électrodes n'est complètement consommée.

a- Calculer la valeur de la constante d'équilibre K relative à l'équation chimique associée à la pile.

b- Calculer C1 et C2.

PHYSIQUE (11 points)

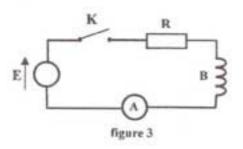
Exercice 1 (5,5 points)

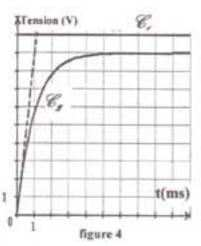
Pour déterminer la résistance r et l'inductance L d'une bobine B, on réalise les expériences suivantes:

Expérience 1

Le circuit électrique de la figure 3 comporte, montés en série :

- un générateur idéal de tension continue de fem $\mathbf{E} = 10\mathbf{V}$;
- la bobine B d'inductance L et de résistance r ;
- un ampèremètre A de résistance négligeable ;
- un interrupteur K et un résistor de résistance $R = 90 \Omega$.


Un système approprié permet de suivre l'évolution temporelle des tensions $\mathbf{u}(t)$ aux bornes du générateur et $\mathbf{u}_{R}(t)$ aux bornes du résistor.

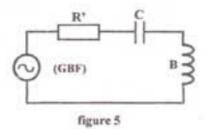

A l'instant t = 0, on ferme l'interrupteur K. Les courbes \mathscr{C} , et \mathscr{C} ,

de la figure 4 représentent respectivement, les variations de u(t) et $u_R(t)$.

 Nommer, en le justifiant, les régimes qui constituent la réponse du dipôle RL à un échelon de tension pour t ≤ 5ms et t ≥ 6ms.

2-a- Etablir l'équation différentielle régissant les variations de l'intensité du courant i(t) traversant le circuit électrique.

b-Vérifier que $i(t) = \frac{E}{R+\tau} (1 - e^{-\frac{t}{\tau}})$ est une solution de cette équation différentielle ; avec $\tau = \frac{L}{R+\tau}$.


e- En exploitant les courbes de la figure 4, déterminer les valeurs de :

 c_1 -l'intensité du courant indiquée par l'ampèremètre en régime permanant et en déduire celle de r ; c_2 -l'inductance L de la bobine.

Expérience 2

On réalise maintenant, le circuit électrique représenté sur la figure 5 qui comporte, montés en série, la bobine B, un résistor de résistance $R'=40~\Omega$ et un condensateur de capacité $C=4,7.10^{-6}~F$. L'ensemble est alimenté par un générateur basse fréquence (GBF) qui délivre une tension

sinusoïdale $u(t) = U_m \sin{(2\pi N t - \frac{\pi}{3})}$, d'amplitude U_m constante et de

fréquence N réglable.

Pour la valeur N1 = 173 Hz de la fréquence N, l'intensité instantanée du courant électrique qui circule est

i(t) = 1_m sin(2πN₁t); où 1_m est l'amplitude de l'intensité électrique. Les courbes de la figure 6 représentent les tensions u(t) aux bornes du générateur et u_c(t) aux bornes du condensateur.

1- a- A partir de la figure 6, déterminer :

 u_1 - le déphasage $\Delta \varphi = \varphi_u - \varphi_{uc}$ de u(t)par rapport à $u_c(t)$;

a2- la phase initiale que de ue(t).

b- Sachant que l'amplitude U_{em} de la tension u_e(t) aux bornes du condensateur est

$$U_{cm} = \frac{I_m}{C.2\pi N_1} ,$$

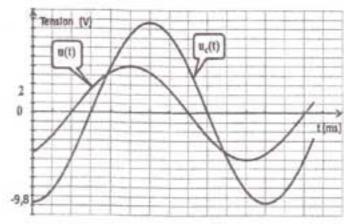


figure 6

déterminer la valeur de l'intensité maximale I_m.

En déduire la valeur de l'impédance Z du circuit.

e- Préciser, en le justifiant, si le circuit est capacitif, résistif ou inductif.

2- La figure 7 de la page 5/5, à remplir par le candidat et à remettre avec sa copie, représente une construction de Fresnel inachevée des tensions correspondant au circuit étudié à la fréquence N₁ dont

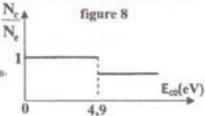
l'équation différentielle s'écrit : $(R'+r)i + \frac{1}{C}\int i.dt + L\frac{di}{dt} = u(t)$.

Soient OA, AB, BC et OC les vecteurs de Fresnel associés respectivement, aux tensions

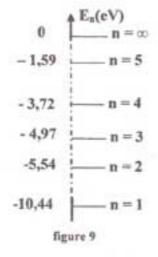
$$(R'+r)i$$
, $\frac{1}{C}\int i.dt$, $L\frac{di}{dt}$ et $u(t)$.

a-Compléter la construction de Fresnel relative aux tensions maximales à l'échelle 1cm pour 1V.

b-Déduire la valeur de d'inductance L de la bobine et celle de sa résistance r.


Exercice 2 (3 points)

On donne : $c = 3,00.10^8 \text{ m.s}^{-1}$; $1 \text{ eV} = 1,60.10^{-19} \text{ J et h} = 6,62.10^{-34} \text{ J.s.}$


L'expérience de Franck et Hertz consiste à bombarder des atomes de mercure dans leur état fondamental par un faisceau d'électrons. Le montage expérimental simplifié est constitué d'une enceinte, d'un canon à électrons et d'un analyseur. On désigne par N_e le nombre d'électrons émis par le canon pendant une

seconde avec une énergie cinétique initiale E_{e0} et par N_e le nombre d'électrons qui arrivent à l'analyseur pendant une seconde et avec la même énergie cinétique E_{e0}.

La courbe de la figure 8 traduit l'évolution du rapport $\frac{N_c}{N_c}$ en fonction de E_{c0} .

- 1- Interpréter les parties de la courbe qui correspondent respectivement aux énergies E_{co} < 4,9 eV et E_{co} > 4,9 eV.
- 2-Préciser la conclusion tirée de l'expérience de Franck et Hertz.
- 3- Le schéma de la figure 9 représente quelques niveaux n d'énergie de l'atome de mercure.
 - a- Préciser la valeur de n correspondant à l'état fondamental de l'atome de mercure et donner la valeur de son énergie.
 - b- En déduire la transition de l'atome de mercure au cours de l'expérience de de Franck et Hertz.
 - e- Calculer la valeur de la longueur d'onde λ relative à cette transition.
- 4- L'atome de mercure est dans son état fondamental.
 - a-Déterminer la valeur limite de la fréquence v_{limite} de la radiation incidente qui peut assurer l'ionisation de l'atome de mercure.
 - b-Parmi les deux radiations de fréquences respectives $v_1 = 2.10^{15} \, Hz$ et $v_2 = 3.10^{15} \, Hz$, préciser en le justifiant, celle qui convient pour ioniser l'atome de mercure.

Exercice 3 (2,5 points)

Etude d'un document scientifique

Le polonium : un métal redoutable

« Le Polonium 210 (²¹⁰₈₄Po) est mille fois plus toxique que le plutonium et un million de fois plus que le cyanure : un seul centième de milligramme suffit à tuer en quelques semaines un homme de poids moyen; une dose évidemment invisible à l'œil nu, indétectable par la police ou les douanes.

Le Polonium 210 émet une radiation de type alpha (⁴₂He) qui peut être arrêtée par une simple feuille de papier, ou quelques centimètres d'air. Ce Polonium perd la moitié de sa radioactivité tous les 138 jours, il doit avoir été récemment fabriqué par irradiation (bombardement par un neutron) du bismuth dans un réacteur nucléaire. Après l'ingestion du poison, il passe de l'estomac dans la circulation sanguine. Chaque atome de Polonium est alors porteur d'un projectile alpha expulsé à grande vitesse : de quoi littéralement griller toutes les cellules de l'organisme, les globules rouges en premier, et causer une mort dite "multifactorielle". Ce redoutable métal est pourtant présent dans la nature, produit en permanence par la désintégration de l'uranium. »

Extrait tiré de : «Nouvel Observateur 11-17 Janvier 2007» D'après Fabien Gruhier par adaptation.

Questions:

- Le texte évoque deux transformations permettant d'obtenir le polonium 210,
 a- Indiquer ces deux transformations.
 - b- Préciser pour chacune d'elles si elle est spontanée ou provoquée.
- 2- En se référant au texte, préciser le type de la radioactivité du polonium 210 et écrire son équation nucléaire sachant que le noyau fils obtenu est le plomb (Pb).
- 3- Définir la période radioactive d'un radioélément et donner sa valeur pour 210 Po.
- 4- Indiquer l'origine de la toxicité du 210 Po, qui est considéré comme métal redoutable.